Law of Iterated Logarithm and Invariance Principle for One-parameter Families of Interval Maps

نویسنده

  • DANIEL SCHNELLMANN
چکیده

We show that for almost every map in a transversal one-parameter family of piecewise expanding unimodal maps the Birkhoff sum of suitable observables along the forward orbit of the turning point satisfies the law of iterated logarithm. This result will follow from an almost sure invariance principle for the Birkhoff sum, as a function on the parameter space. Furthermore, we obtain a similar result for general one-parameter families of piecewise expanding maps on the interval.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Limit Theorems and Invariance Principles for Time-One Maps of Hyperbolic Flows

We give a general method for deducing statistical limit laws in situations where rapid decay of correlations has been established. As an application of this method, we obtain new results for time-one maps of hyperbolic flows. In particular, using recent results of Dolgopyat, we prove that many classical limit theorems of probability theory, such as the central limit theorem, the law of the iter...

متن کامل

An invariance principle for the law of the iterated logarithm for vector-valued additive functionals of Markov chains

In this note, we prove the Strassen’s strong invariance principle for vectorvalued additive functionals of a Markov chain via the martingale argument and the theory of fractional coboundaries. AMS subject classifications: 60F05, 60J05

متن کامل

AN ALMOST SURE INVARIANCE PRINCIPLE FOR THE EXTREMA OF CERTAIN SAMPLE FUNCTIONS By

For a general class of statistics expressible as extrema of certain sample functions, an almost sure invariance principle, particularly useful in the context of the law of iterated logarithm and the probabilities of moderate deviations, is established, and its applications are stressed . .~ AMS 1970 Classification Numbers: 60FlO, 60F15

متن کامل

An Invariance Principle for the Law of the Iterated Logarithm for Additive Functionals of Markov Chains

In this paper, we prove Strassen’s strong invariance principle for a vector-valued additive functionals of a Markov chain via the martingale argument and the theory of fractional coboundaries. The hypothesis is a moment bound on the resolvent.

متن کامل

The Law of the Iterated Logarithm for Additive Functionals of Markov Chains

In the paper, the law of the iterated logarithm for additive functionals of Markov chains is obtained under some weak conditions, which are weaker than the conditions of invariance principle of additive functionals of Markov chains in M. Maxwell and M. Woodroofe [7] (2000). The main technique is the martingale argument and the theory of fractional coboundaries.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013